Visualize The Model
Output the Model to the Console
- Call the Summary method on the model to display it
Reference Material
https://keras.io/models/about-keras-models/
Hint 1
call to retrieve the model:
model.summary()
[collapse]
Full Solution
To output the model to the console:
# summary to console print (model.summary())
[collapse]
[collapse]
Train The Model
Fit the Model
- Fit the model with the following parameters:
- the inputs (X)
- the outpus (y)
- validation_split=.20
- batch_size=64
- epochs =25
Reference Material
https://keras.io/models/sequential/
Hint 1
call:
model.fit(???)
[collapse]
Hint 2
The entire model.fit command:
model.fit(X, y, validation_split = .20, batch_size = 64, epochs = 25)
[collapse]
Full Solution
#Fit the ANN to the training set history = model.fit(X, y, validation_split = .20, batch_size = 64, epochs = 25)
[collapse]
[collapse]
Visualize The Training
Visual the Training Accuracy
- Visualize the training model accuracy with pyplot from matplotlib using the following parameters:
- the inputs = history.history[‘acc’] and history.history[‘val_acc’]
- the title = model accuracy
- ylabel = accuracy
- xlabel = epoch
- legend containing = train and test
Reference Material
https://matplotlib.org/api/pyplot_api.html
Hint 1
Import the library:
import matplotlib.pyplot as plt
[collapse]
Full Solution
Use the following to display the graph:
import matplotlib.pyplot as plt # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
[collapse]
[collapse]
Visual the Training Model Loss
- Visualize the training model loss with pyplot from matplotlib using the following parameters:
- the inputs = history.history[‘loss’] and history.history[‘val_loss]
- the title = model accuracy
- ylabel = loss
- xlabel = epoch
- legend containing = train and test
Reference Material
https://matplotlib.org/api/pyplot_api.html
Full Solution
Use the following to display the graph:
# summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
[collapse]
[collapse]
Lab Complete!
Extra Credit – Understand Tensorboard
Interpret the Graphs